
0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2018.2804860, IEEE
Transactions on Automatic Control

1

Composition of least restrictive controllers, with application to

collision avoidance in multiagent systems.

Alessandro Colombo, Member, IEEE, Fabio Della Rossa

Abstract—A supervisor (of a continuous-time or hybrid system)
is a controller in charge of modifying the input assigned by
a user or set of users to a system, in order to enforce a
given specification. This paper describes conditions under which
multiple supervisors, designed to enforce different specifications,
can be composed to obtain a supervisor enforcing the union of
those specifications. As an application, we propose the compo-
sition of two supervisors, one enforcing collision avoidance of a
large multiagent system, the other enforcing a second property,
called sparsity, that allows efficient computation of the collision
avoidance conditions.

I. INTRODUCTION

Multiple methods for the computation of reachable sets for

linear, nonlinear, and hybrid systems have been developed

over the past twenty years [1]–[5]. In the context of mobile

robotics, intelligent transportation systems, and multiagent

systems, a particularly interesting application is the design of

least restrictive controllers, or supervisors (by analogy with

the framework defined in [6]), which are controllers in charge

of restricting the set of available actions of a system to a subset

guaranteed to avoid a given bad set. In these applications,

the task of the supervisor can be formulated in terms of a

reachability problem through computation of a capture set [2],

[7].

In the presence of two or more specifications, supervi-

sors can in principle be combined to avoid multiple bad

sets simultaneously. This finds application in the design of

multiobjective controllers for multiagent systems, ensuring for

instance collision avoidance and visibility or connectivity [8].

In this paper, we discuss the properties required to ensure that

the series composition of supervisors result in an algorithm

with the same guarantees of least restrictiveness, as well as

other important properties that we define later.

As an application, we propose an example of supervisors

composition based on results from [9]: we tackle the design of

a collision-avoidance supervisor that is known to be intractable

on systems of many vehicles, and compose it with a second

supervisor, in charge of restricting the system state to a set of

instances that can be solved quickly, according to a sparsity

property defined in [9]. The main novelty here is the introduc-

tion the second supervisor, that enforces sparsity regardless

of the behaviour of each vehicle. The result is sketched in

Fig. 1, where the system is a set of 370 cars modelled as

second order nonlinear systems and driven by independent

controllers (human or automatic) along intersecting paths.

The supervisor is in charge of correcting the inputs of the

independent controllers to avoid collisions. As we better detail

Alessandro Colombo and Fabio Della Rossa are with DEIB,
Politecnico di Milano, via Ponzio 34/5, 20133 Milano, Italy.
{alessandro.colombo,fabio.dellarossa}@polimi.it

Fig. 1. 370 cars on paths intersecting in 25 locations. A video of this scenario
is available at https://vimeo.com/212928016. Cars are supervised as detailed
in Section III; cars in the same cluster are connected by a green segment.

in Sec. III, we obtain an algorithm capable of supervising in

real time the 740-dimensional nonlinear model.

All terminology mentioned above is precisely defined in the

next section, together with the concept and requirements of a

supervisor and the main theoretical result. The application is

discussed in Section III.

II. CASCADE COMPOSITION OF SUPERVISORS

The terminology introduced here is mostly derived from the

formal verification and hybrid systems literature [2], [3], [10].

It will be used to formalize the properties of least restrictive-

ness, nonblockingness, and correctness of a supervisor. The

main result is in Theorem 2, where we specify the conditions

that a set of supervisors must satisfy for these properties to be

preserved through supervisor composition.

Consider a model

ẋ = f(x,u),

where x ∈ X and u ∈ U are state and input, while f is

an arbitrary function. We use the symbol x to denote both the

state value (an element of the set X) and a time signal (a vector

function of time). When initial conditions can be ignored,

we write x(t,u) to denote the state reached at time t with

input u, starting from the implicitly defined initial condition

x(0), otherwise we specify the initial condition by writing

x(t,u,x(0)). We call bad set BS ⊂ X a set of states that the

system should avoid. A supervisor enforcing x /∈ BS is said



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2018.2804860, IEEE
Transactions on Automatic Control

2

to satisfy the specification S. Given a bad set BS , we define

the Maximal Controlled Invariant Set (with respect to S):

MCISS := {x ∈ X : ∃u : x(t,u) /∈ BS , ∀ t ≥ 0}.

The MCISS is the largest subset of X where an input u exists

that can keep x out of the bad set for all positive times [11].

Finally, we call

US(x) := {u : x(t,u) /∈ BS , ∀ t ≥ 0}

the set of inputs that guarantee that x remains outside of the

bad set.

The supervisor is a map σ : (x, ū) 7→ u, where ū is a signal

defined on a (short) time interval [0, τ ], τ > 0. In practice,

it can be implemented with the discrete-time Algorithm 1

with time stepping τ . In the algorithm, which was originally

Algorithm 1 Supervisor for an arbitrary specification S

1: procedure σ(x(0), ū)
2: xnext ← x(τ, ū,x(0))
3: if xnext ∈ MCISS and x(t, ū) /∈ BS for all t ∈ [0, τ ] then

4: return ū

5: else
6: return uoverride

introduced in [12], xnext = x(τ, ū,x(0)) is the state that

will be reached at time τ with input ū starting from initial

condition x(0). Algorithm 1 uses the current state x(0), and

the input ū (often assumed constant over the interval [0, τ ]),
to predict a future state xnext. Then, it checks that the future

state is in MCISS and that it can be reached without leaving

MCISS . If this is not the case, the override input uoverride is

returned, to be used instead of ū. The problems of evaluating

xnext ∈ MCISS and computing uoverride are not discussed

here, but details for our example application are provided in

Sec. III.

We are now in the position to formalize the property of least

restrictiveness of a supervisor σS(x(0),u).

Definition 1. The supervisor of Algorithm 1 is least restrictive

if (σS(x(0), ū) 6= ū) ⇔
(

∃ t ∈ [0, τ ] : x(t, ū) ∈ BS or ∃ t ≥
0 : x(t,u,x(τ, ū)) ∈ BS , ∀u ∈ U

)

In other words, a least restrictive supervisor returns ū,

unless using ū for t ∈ [0, τ ] would eventually result in a

violation of the specification S, no matter what input is used

for t ≥ τ . A least restrictive supervisor is thus one that allows

x to visit all and only the subset MCISS of X .

Now consider a vector of input signals ū[0,τ ], issued at time

0 and valid for the time interval [0, τ ], and a vector ū[τ,2τ ],

issued at time τ and valid for the time interval [τ, 2τ ]. The

supervisor must possess the two properties of correctness and

nonblockingness, defined as follows.

Definition 2. We say that a supervisor σS : (x(0), ū) 7→ u

is correct if x(t, σS(x(0), ū)) /∈ BS for all t ∈ [0, τ ],

nonblocking if σS

(

x

(

τ, σS(x(0), ū[0,τ ])
)

, ū[τ,2τ ]

)

6= ∅.

Intuitively, correctness ensures that the supervisor keeps x

out of the bad set BS , nonblockingness ensures that it can

return an input at each time step, i.e., that the map σS(x,u)
can be iterated indefinitely.

σ1 σ2user
ū

x

u
′

u
′′

plant

Fig. 2. Interconnection of two supervisors

In the following, we define the properties that allow to con-

nect in series multiple supervisors, ensuring that the aggregate

supervisor preserves correctness, nonblockingness, and least

restrictiveness. This is the main result of this note. Let us

write

σ1 99K σ2

when the output of a supervisor σ1 is the input of σ2 (as in

Fig. 2). We write

u ∈ σ(x) if σ(x,u) = u,

where u ∈ σ(x) reads ‘σ(x) accepts the input u’.

Definition 3. A supervisor σ2(x,u) is compatible with a

supervisor σ1(x,u) if

σ2(x, σ1(x,u)) ∈ σ1(x), ∀x ∈ MCIS1 ∩MCIS2, ∀u ∈ U

Notice that the relation σ2(x, σ1(x,u)) ∈ σ1(x) is not the

same as σ2(x, σ1(x,u)) = σ1(x,u); in the latter, the inputs

returned by the maps σ2(x, σ1(x,u)) and σ1(x,u) must be

identical, in the former the input returned by σ2(x, σ1(x,u))
must simply be accepted by σ1. Notice also that the above

relation does not mean that σ2(x,u) ∈ σ1(x), ∀x ∈ X, ∀u ∈
U . In this case, the action of σ2 would be sufficient to enforce

the specification of σ1, making σ1 redundant.

We can provide a geometric condition for the satisfiability

of Definition 3. Call ∂MCISS the boundary of MCISS , i.e.,

the set of x ∈ X that belong to the closure of both MCISS

and of its complement in X .

Theorem 1. The condition in Definition 3 can be satisfied if

and only if

U1(x) ∩ U2(x) 6= ∅, ∀x ∈ ∂MCIS1 ∩ ∂MCIS2. (1)

Proof. The condition in Definition 3 is satisfiable, at a given

x, provided there exists u ∈ U accepted by both σ1 and

σ2. This is possible if and only if u ∈ U1(x) ∩ U2(x). This

condition is trivially satisfied away from ∂MCIS1 ∩ ∂MCIS2,

since US(x) = U when x is in the interior of MCISS . Hence,

condition (1) is necessary and sufficient.

Theorem 2. Consider two correct, nonblocking, and least

restrictive supervisors σ1 and σ2, and the cascade composition

σ1 99K σ2. If σ2 is compatible with σ1, then σ1 99K σ2 is

correct, nonblocking, and least restrictive.

Proof. Correctness with respect to specification 2 is guar-

anteed by assumption, since the action of σ1 on the inputs

does not change the properties of σ2, while correctness with

respect to specification 1 is guaranteed by compatibility,

since σ2(x, σ1(x,u)) ∈ σ1(x). Nonblockingness follows by

a similar argument, since σ2(x, σ1(x,u)) ∈ σ2(x) (trivially),



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2018.2804860, IEEE
Transactions on Automatic Control

3

σ2(x, σ1(x,u)) ∈ σ1(x) (by compatibility), and both σ1 and

σ2 are nonblocking. Finally, least restrictiveness is a simple

consequence of the structure of Algorithm 1, which defines the

two supervisors: if σ2(x, σ1(x,u)) 6= u, then either u /∈ σ1(x)
or u /∈ σ2(x), and since they are both least restrictive, so must

be σ1 99K σ2.

It is a simple exercise to extend the above result to an

arbitrary chain of supervisors by iterative reasoning.

Corollary 3. Consider a chain σ1 99K σ2 99K · · · of

correct, nonblocking, and least restrictive supervisors. If σi

is compatible with σi−1, then σ1 99K σ2 99K · · · is correct,

nonblocking, and least restrictive.

III. APPLICATION: A SEMIAUTONOMOUS VEHICLE

NETWORK

Consider a group of cars moving through a road network,

such as in Fig. 1. Each car’s driver is responsible of choosing

its car’s input, and may occasionally commit a mistake. The

task of a supervisor is to correct the wrong inputs to avoid

collisions between any two cars in the system. Techniques

to design a supervisor for vehicle collision avoidance have

been discussed in [12], [13] and further expanded in [14]–

[19]. Computation of the MCIS for a supervisor avoiding

collisions of cars near a single intersection was proven to

be NP-hard in [12], [20], so a monolithic approach to a

scenario such as in Fig. 1 is in general intractable. Real-time

computation is however achievable if the number of cars in

the system is small enough [17], [19], [21]; this suggests, as

a solution strategy, partitioning cars into small independently

controllable groups. A means to partition a large set of vehicles

into smaller subsets that can be independently supervised for

collision avoidance was recently proposed in [9], but hinges on

a sparsity hypothesis requiring vehicles to be ‘not too packed

together’, (in a sense precisely defined in [9]), and sparsity

may be violated as vehicles move about the network. Here

we propose to construct a composite supervisor, consisting

of a layer in charge of enforcing sparsity to allow vehicle

partition into clusters of a predefined maximum size Nmax,

and of another layer in charge of avoiding collisions.

The basic structure of the architecture shares similarities

with [22]–[30]. However, contrary to these references, our

design focus is on minimizing the amount of corrections to the

drivers inputs, that is, to make the controller least restrictive.

This is a desirable property to minimally perturb the driving

strategy pursued by the human or automatic driver of each car.

In the following, we assume that the short-term paths of all

cars are known. We model the motion of each car i along its

path with the equation

ẍi = ui − 0.0005ẋ2
i , (2)

with input ui and velocity ẋi bounded in the intervals

[umin, umax], [ẋmin, ẋmax], with ẋmin ≥ 0. The quadratic term

in (2) accounts for air drag. The position of the car along its

path is xi ∈ R, and ui ∈ R is the control input. We call

xi := (xi, ẋi) the state of car i, and use the symbols x ∈ X
and u ∈ U without subscript to indicate the aggregate state

and input of all cars.

Partition

σsafe σsizedrivers
ū

x

κ, {xC}

{u′
C} {u′′

C}
vehicles

Fig. 3. Cascade of the supervisors σsafe and σsize. The partition κ is a set of
clusters C, while {xC} is the set of initial conditions of cars in each cluster.

We call Pi the path of vehicle i on a planar road network,

and denote Pi(xi) : R → R
2 the position of car i on the

plane. We call Oi,j a subset of the plane where the paths of

vehicles i and j overlap, D(Pi(xi),Pj(xj)) ∈ R the distance

between these vehicles measured along the paths, and define

a minimum distance d, below which vehicles on overlapping

paths have a rear-end collision. Vehicles on overlapping path

intervals are assumed to move in the same direction. Finally,

we call Ik an open region around the k-th intersection where

the simultaneous presence of two vehicles on different paths

would constitute a side collision. With this notation, we define

the conflict set

C :=

{x ∈ X : Pi(xi),Pj(xj) ∈ Oi,j ,D(Pi(xi),Pj(xj)) < d}∪
{

x ∈ X : Pi(xi),Pj(xj) ∈ Ik \ Oi,j

}

(3)

as the set of all configurations corresponding to a collision of

two or more cars.

A. Time-τ independent partition

The partitions described below, and the partitioning algo-

rithm described in the appendix, are taken from [9]. We report

here only the details needed to follow the rest of the paper.

Call κ := {C1, . . . , Cc} a partition of cars into clusters

C1, . . . , Cc. We denote with a subscript C the restriction of a

vector or set to the vehicles in cluster C: xC is the aggregate

state of all vehicles in cluster C, MCISS,C is MCISS restricted

to vehicles in C, U(xC) is the set U(x) restricted to vehicles

in C.

Definition 4. A partition κ := {C1, . . . , Cc} is time-τ inde-

pendent if, for all t ∈ [0, τ ] and for all u ∈ U ,
(

xC(t,u) ∈ MCISS,C , ∀C ∈ κ
)

⇔
(

x(t,u) ∈ MCISS

)

.

In other words, a partition is time-τ independent if, for all

states x(t,u) reachable in a time τ with an arbitrary input

u ∈ U , a set of parallel supervisors (with time stepping τ ,

as in Algorithm 1), each one acting on a different cluster

C by enforcing xC(t,u) ∈ MCISS,C , jointly result in a

supervisor enforcing specification S exactly, that is, in a least

restrictive centralized supervisor. An algorithm to compute a

time-τ independent partition is reported in Appendix A-A

B. Implementation of the two-layer supervisor

The information flow in our control architecture is repre-

sented in Fig. 3: a partitioning function partition(x) separates



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2018.2804860, IEEE
Transactions on Automatic Control

4

cars into clusters, then the inputs of cars in each cluster are

filtered by a supervisor (σsafe(xC ,uC)) in charge of ensuring

safety, and one (σsize(x,u)) enforcing that, at the following

time step, there will not form clusters greater than a given

maximum size Nmax. The supervisor σsafe, which is the most

computationally intensive task, computes on each cluster of

the partition independently, hence it can be run in parallel

over clusters. The complexity of the distributed σsafe is thus

capped through the choice of Nmax, while the complexity

of partitioning vehicles in clusters is, as explained in the

appendix, O(nNmax), where n is the total number of cars

in the system. In what follows, we describe how each of the

three elements of Fig. 3 is constructed.

The function partition(x) is defined in Algorithm 2, in the

appendix.

We can construct σsafe using Algorithm 1, with the spec-

ification ‘safe’ defined by its bad set Bsafe := C, where

the right-hand side is the conflict set (3). Ways to compute

MCISsafe and the override input, and therefore to implement

the supervisor in different road scenarios, are discussed for

instance in [12]–[19].

Finally, to construct σsize we first define its bad set

Bsize := {x ∈ X : max
Ci∈κ

size(Ci) > Nmax}, (4)

with κ = partition(x). The parameter Nmax is the maximum

size of a cluster that the supervisor should allow to form. To

define the supervisor, we need to identify MCISsize. We do

this through the following results.

Theorem 4. partition(x) can be defined so that, for all

x(0) ∈ X , ∃u ∈ U such that partition(x(0)) =
partition(x(τ,u,x(0)))

The above theorem is proved in the Appendix.

Corollary 5 (Corollary of Theorem 4). MCISsize = ¬Bsize.

Proof. Theorem 4 asserts the existence of an input that

preserves the partition; therefore, any x /∈ Bsize belongs to

MCISsize.

Finally, to prove compatibility of the two supervisors, we

use the following theorem, proved in the appendix.

Theorem 6. partition(x) can be defined so that, for all x(0) ∈
MCISsafe ∩ MCISsize, there exists a u ∈ Usafe(x) such that

partition(x(0)) = partition(x(τ,u,x(0)))

Corollary 7 (Corollary of Theorem 6). The supervisor σsize

can be constructed compatible with σsafe.

Proof. By Theorem 6, with suitable definition of partition(x),
for all x(0) ∈ MCISsafe∩MCISsize there exists a u ∈ Usafe(x)
that preserves the partition. This implies u ∈ Usize(x), hence

u ∈ Usize(x) ∩ Usafe(x), so that

Usize(x) ∩ Usafe(x) 6= ∅, ∀x ∈ MCISsafe ∩MCISsize.

By Theorem 1, σsize is thus compatible with σsafe.

By the above corollary, x ∈ MCISsize can be evaluated

simply by checking whether x admits a partition with elements

not larger than Nmax. Computation of MCISsize therefore

shares the same complexity as Algorithm 2.

C. Simulations

Using the above results, we can construct the cascade

composition of σsafe and σsize to supervise cars in a road

network. We performed simulations on the network in Fig. 4,

where the distance between intersections along any path is

100m. Vehicles have length d = 5m, with ui ∈ (−5, 2)m/s

and ẋi ∈ (0, 13.9)m/s2. The bad set Bsize is defined as in (4)

with Nmax = 4. The supervisor runs with step 0.1s.

P1

P2

P3

I1 I2

Fig. 4. Two intersections of three paths, the conflict regions around each
intersection are shaded red.

The results of the simulations are in Fig. 5. The action of

σsafe is apparent around t = 5s, when it avoids two rear

collisions between cars 10-11 and 13-14, or in the first 10s

of simulation, when a sequence of interventions prevents a

side collision between agents 1-5 and 16-18. The action of

σsize can be seen e.g., around t = 20s, where the blue cluster

is slowed to avoid merging with the green 4-vehicle cluster.

The same supervisor was then used to control the road

network in Fig. 1, with 370 cars on 10 intersecting paths at a

distance of 90m from each other. For the sake of simplicity,

5 10 15 20 25 30
0

0

50

100

150

200

250

300

t [s]

x [m]
i xi(0) v̄i P
1 180 11.4 1

2 165 9.2 1

3 150 10.2 1

4 135 9 1

5 120 8.6 1

6 105 7.4 1

7 90 6.6 1

8 75 7 1

9 60 8.3 1

10 45 5.9 1

11 30 11.7 1

12 15 9.2 1

13 43 6.1 2

14 23 12.9 2

15 3 7.5 2

16 173 10.4 3

17 153 9.2 3

18 133 11.3 3

Fig. 5. 18 cars in the road network of Fig. 4. Trajectories are solid,
dotted, and dashed for cars on the solid, dotted, or dashed path of Fig. 4.
The intersections, represented by the shaded bands, are at the coordinates
(95, 105) and (205, 215) of each path. Same-colour trajectories at a given
time instant identify cars temporarily grouped in the same cluster, while black
trajectories represent cars in a singleton cluster. Trajectories are highlighted
in red at times when a supervisor is overriding the driver input. Agents are
numbered as in the table on the right, which also reports their initial position
(initial velocity ẋi(0) = 5m/s, ∀i), and their target velocity v̄i. The desired
input of each car is computed through a proportional negative feedback with
unit gain on the difference between target velocity and current velocity.



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2018.2804860, IEEE
Transactions on Automatic Control

5

for the simulation linked in the figure we have programmed

all cars to follow straight paths, but our results hold regardless

of the paths geometry. The supervisor had step τ = 0.2s and

Nmax = 6. Fig. 6 reports the time taken to run the partitioning

algorithm and the two supervisors on each of the 370 agents.

The maximum time never exceeds 0.175s, this suggest that

a real-time execution of the two algorithms is plausible (for

instance running the supervisors with time stepping τ = 0.2s,

as we did in the simulation), though communication delay was

not considered in the simulations.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

10

10

10

10

10

10
0

1

2

3

4

5

step execution time

n
u

m
b

er
o

f
st

ep
s

Fig. 6. Distribution of the time length of a single step of the partitioning and
supervisory algorithms, across all vehicles, during the simulation of Fig. 1.

IV. CONCLUSION

We have discussed a general framework to design multiple

supervisors that can operate simultaneously, while retaining

their fundamental properties of correctness, nonblockingness,

and least restrictiveness. Under this framework supervisors

for different specifications can be designed separately, then

applied sequentially in a modular fashion, without losing their

performance guarantees.

As an example, and building on results in [9], we have used

these ideas to design a two-layer supervisor that can prevent

collisions between cars, while ensuring that the largest set of

cars that must be simultaneously controlled to avoid a collision

never exceeds a set size. This allowed us to overcome the

computational complexity barrier typically affecting collision-

avoidance architectures for multiagent systems.

While here we explored an application of cascaded su-

pervisor to a vehicle collision avoidance problem, the same

approach could be used to merge supervisors with other spec-

ifications, such as visibility, connectivity, or energy efficiency.

APPENDIX A

IMPLEMENTATION DETAILS

In Appendix A-A and A-B we report and adapt to satisfy

the presented theory the results presented in [9]. Then, we

prove Theorems 4 and 6 in Appendix A-C and A-D.

A. Definition of partition(x)

Consider a set-valued function Iτi (t) : R+ → 2R
2

, which

attaches to a time t a subset of R
2 with xi ∈ Iτi (0). Call

IτC(t) := {Iτi (t)}, i ∈ C.

Definition 5. IτC(t) is a time-τ guaranteed hull for cluster

C if, whenever US(xC) 6= ∅, for all uC,[0,τ ] ∈ US(xC) there

exists at least one uC,(τ,∞) ∈ US(xC(τ,uC,[0,τ ])) such that

xi(t, ui) ∈ Iτi (t), for all t ≥ 0 and for all i ∈ C.

In simple terms, a time-τ guaranteed hull is a set of states

which is guaranteed to contain at least one safe trajectory,

when such a trajectory exists.

Algorithm 2 defines a procedure to partition a set of cars.

At line 6, the symbols Iτ{i,j}(t) and B{i,j} denote the time-τ
guaranteed hull and the bad set for the set of cars {i, j}.

Algorithm 2 Partitioning algorithm

1: procedure Partition(x)
2: Define a partition κ := {C} where all vehicles are singleton clusters
3: Tag all clusters not done

4: while there exists a cluster not done do

5: Compute IC for all C ∈ κ
6: Form a new partition κ′ by merging all Ca, Cb ∈ κ

such that ∃ t, i ∈ Ca, j ∈ Cb :I
τ
{i,j}

(t) ∩ B{i,j} 6= ∅
7: Tag as done all clusters that were not merged (i.e., those

that were not modified between κ and κ′)
8: Set κ = κ′

9: return κ, {xC}

Theorem 8 (Proved in [9]). Algorithm 2 terminates and finds

a time-τ independent partition.

A note on the complexity of Algorithm 2 is now due.

Assume that, when executing Algorithm 2, the maximum size

of a cluster is Nmax. Then, the while loop was iterated at most

Nmax times. Assuming a worst-case scenario where, at line 6,

all guaranteed hulls must be mutually compared, and assuming

Line 6 is executed in parallel on each car, the algorithm has

running time O(nNmax) for a problem with n cars. In practice,

as discussed in [9], the running time is much faster, since only

guaranteed hulls of neighbouring cars need be compared.

B. Definition of the guaranteed hull

We first provide the definition in the simplified scenario of

an isolated intersection I. The result is extended to an arbitrary

road network in the next section.

For a path Ph, call (ah, bh) the interval {xi : Ph(x) ∈ I}.
Assume that cluster C has n vehicles on path Ph, and number

them in order so that x1 > x2 > . . . Call CPh
the subcluster

formed by these vehicles. Assume Usafe(xCPh
) 6= ∅. Fixed

x, consider the preorder u � u
′ if x(t,u) ≤ x(t,u′), ∀ t. It

is proved in [17] that Usafe(xCPh
) has a minimum u

xCPi

in

this preorder. Let us use the symbol
⌊

u[t1,t2),u[t2,t3), . . .
⌋

to

write the concatenation of multiple input signals defined over

nonoverlapping time intervals. Call

Dstop := lim
t→∞

xi(t, umin) with xi(0) = 0, ẋi(0) = ẋmax,

∆i,stop(τ) := max
ẋi(0)∈[0,ẋmax]

limt→∞ xi

(

t,
⌊

umax,[0,τ ], umin,(τ,∞)
⌋

)

− xi(t, umin).

and ∆stop(τ) := maxi∆i,stop(τ).
Define Iτi (t) := [xi(t, umin),xi(t, ūi)],where ūi is a bang-

bang input defined as follows. Consider the two cases:



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2018.2804860, IEEE
Transactions on Automatic Control

6

(i) [xn(0), x1(0) + Dstop + ∆stop] ∩ (ah, bh) = ∅, i.e.,

vehicles in cluster C can safely stop before entering the

intersection, regardless of their current velocity and of

their input in the time interval [0, τ ], or they are all past

the intersection;

(ii) [xn(0), x1(0) + Dstop + ∆stop] ∩ (ah, bh) 6= ∅, i.e.,

some vehicles within the cluster may not stop before the

intersection.

In case (i), define ūi as

ūi(t) :=
⌊

umax,[0,t∗
i
], umin,(t∗

i
,∞)

⌋

, (5)

switching at a time t∗i ≥ 0 so as to satisfy

lim
t→∞

xn(t, ū) = lim
t→∞

xn(t, umin) + ∆stop

for vehicle n, and

lim
t→∞

xi(t, ūi) =

max
{

lim
t→∞

xi(t, ui) + ∆stop, lim
t→∞

xi+1(t, ūi+1) + d
}

(6)

for all other vehicles.

In case (ii), for all vehicles i such that xi(0) + Dstop +
∆stop ≤ ah, define ūi as in (5) Assume there are n − m
such vehicles. For the remaining m vehicles, define ūi as a

bang-bang input

ūi(t) :=
⌊

umax,[0,t∗
i
], umin,(t∗

i
,∞)

⌋

, (7)

switching at a time t∗i ≥ 0 so as to satisfy limt→∞ xi(t, ūi) =

max
{

limt→∞ xi(t, ui) +∆stop, bh +Dstop +∆stop + (m−

i)d
}

.

Lemma 9. IτC(t) defined above satisfies the property in

Definition 5.

Proof. The definition of guaranteed hull given above is a slight

modification of the same definition in [9]. The proof follows

straight from the proof of Theorem 8 in [9], noting that t∗i ≥ τ
and therefore the guaranteed hull defined here contains that

defined in [9]. We can prove t∗i ≥ τ as follows. We have, by

definition of ∆stop,

∆stop + lim
t→∞

xi(t, ui) ≥ lim
t→∞

xi

(

t,
⌊

umax,[0,τ ], umin,(τ,∞)
⌋

)

,

and from definitions (i)-(ii) t∗i must satisfy

∆stop+ lim
t→∞

xi(t, ui) ≤ lim
t→∞

xi

(

t,
⌊

umax,[0,t∗
i
], umin,(t∗

i
,∞)

⌋

)

;

therefore t∗i ≥ τ .

C. Proofs of Theorems 4 and 6 for an isolated intersection

We now write Iτ
C(x, t) for the set Iτ

C(t) computed from

state x.

Proof of Theorem 4. It is sufficient to take ui,override :=
umin. Given our definition of IτC , this ensures that

Iτi (xi(τ, ui,override), t) ⊆ Iτi (xi(0), tτ ), for all i and for all

t. As a consequence, the partition computed at time τ is the

same as that computed at time 0.

Proof of Theorem 6. We prove the theorem by constructing

the required uoverride.

Consider first a cluster of cars 1, . . . , n on the same path,

with state x. Assume Usafe(x) 6= ∅. Take uoverride = u, and

take x
′ := x(τ,uoverride). Since all cars are on the same path,

u ∈ Usafe(x). We must prove that Iτ (x′, t) ⊆ Iτ (x, t+τ), ∀ t.
Let us call ū the input giving the upper bound of Iτ (x, t),

and ū
′ the same input for Iτ (x′, t). Since umin � uoverride,

x(t + τ,umin) ≤ x
′(t,umin), ∀ t ≥ 0, the lower bound of

Iτ (x, t) is smaller than the lower bound of Iτ (x′, t). We have

xi(t, ūi) ≥ xi(t, ui,override), ∀ t ∈ [0, t∗i ], ∀ i. (8)

We also have

lim
t→∞

x(t, ū) = lim
t→∞

x
′(t, ū′), (9)

since by choosing uoverride = u the two terms in the max in

(6) remain unchanged. This, with (8) and by monotonicity,

insures x(t + τ, ū) ≥ x
′(t, ū′), ∀ t ≥ 0, i.e., the upper

bound of Iτ (x, t) is greater than the upper bound of Iτ (x′, t).
Therefore, Iτ (x′, t) ⊆ Iτ (x, t+ τ), ∀ t.

Consider now the more general case of a cluster of cars on

different paths, when for some cars Iτ is defined as in case

(ii). For all cars falling under case (i) we can proceed with the

same proof as above. For the remaining ones, it is shown in

[9] (Lemma 9) that there exists an input ui ∈ Usafe giving

limt→∞ xi(t, ui) = max
{

limt→∞ xi(t, ui), bh + Dstop +

(m − i)d
}

. Using such an input as ui,override, we show

with the following reasoning that (9) still holds. Assume

limt→∞ xi(t, ui) ≥ bh +Dstop + (m− i)d; then ui,override =
ui, and (9) follows as above. If instead limt→∞ xi(t, ui) <
bh + Dstop + (m − i)d, ui,override is constructed so that

limt→∞ xi(t, ui,override) = bh + Dstop + (m − i)d. This

implies limt→∞ x′
i(t, u

′
i) + ∆stop ≤ bh + Dstop + ∆stop +

(m− i)d, (where u
′ is the minimum of Usafe(x

′)). Therefore,

limt→∞ x′
i(t, ū

′) = bh + Dstop + ∆stop + (m − i)d =
limt→∞ xi(t, ū). Given (9), the proof follows as for case

(i).

D. Extension to arbitrary network topology

We now extend the above results to work on a network with

multiple nearby intersections.

Consider a road network with multiple paths and intersec-

tions, and assume that Algorithm 2 returns clusters with at

most Nmax agents on each path. Given a path P crossing, in

this order, two intersections Ih and Ik, let [ah, bh] and [ak, bk]
be the length of the intersections along P .

Theorem 10. If ak−bh > Dstop+∆stop+(Nmax−1)(∆stop+
d) for any path and pair of intersections crossed by the path,

then Lemma 9 and Theorem 6 hold.

Proof. From (5) and (7), we have

lim
t→∞

xi(t, ūi) ≤ max
{

lim
t→∞

xi(t, ui)+∆stop, bh+Dstop+

∆stop + (n− i)d, lim
t→∞

xi+1(t, ūi+1) + d
}

(10)



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2018.2804860, IEEE
Transactions on Automatic Control

7

and, in particular for car n,

lim
t→∞

xn(t, ūn) ≤

max
{

lim
t→∞

xn(t, un) + ∆stop, bh +Dstop +∆stop

}

. (11)

From the proof of Theorem 1 in [17], we also have

lim
t→∞

xi(t, ui) ≤ max
{

lim
t→∞

xi(t, umin),

lim
t→∞

xi+1(t, ui+1) + d
}

. (12)

Intuitively, the above equation says that, if a car in a line

must stop without collisions, the lower bound to its stopping

position depends on its stopping distance, and on the lower

bound to the position at which will stop the car behind it.

From Algorithm 2 we can deduce that

lim
t→∞

xi(t, umin) ≤ lim
t→∞

xi+1(t, ūi+1) + d, (13)

otherwise cars i and i + 1 would not be clustered to-

gether. Using (13) in (12) and the result in (10) we obtain

limt→∞ x1(t, ū1) ≤ max
{

limt→∞ x2(t, ū2) + ∆stop + d,

bh+Dstop+∆stop+(n−1)d
}

. Iterating the above inequality

we obtain

lim
t→∞

x1(t, ū1) ≤ max
{

lim
t→∞

xn(t, ūn)+(n−1)(∆stop+d),

bh +Dstop +∆stop + (n− 1)(∆stop + d)
}

. (14)

By the definition of Dstop

lim
t→∞

xn(t, ui) ≤ xn(0) +Dstop, (15)

Using (11) and (15) in (14), we finally obtain

limt→∞ x1(t, ūi) ≤ max
{

xn(0) + Dstop + ∆stop + (n −

1)(∆stop+d), bh+Dstop+∆stop+(n−1)(∆stop+d)
}

. As a

consequence, if ak−bh > Dstop+∆stop+(n−1)(∆stop+d)
the guaranteed hull will intersect, for t ∈ [0,∞), only one

intersection along each path, so that the results obtained

above for an isolated intersection hold.

Note that, with the parameter in the simulation of Fig. 1,

we have Dstop = 19.2m and ∆stop = 2.8m, verifying the

assumption of Theorem 10.

REFERENCES

[1] O. Shakernia, G. J. Pappas, and S. Sastry, “Decidable controller synthesis
for classes of linear systems,” in Hybrid Systems: Computation and

Control, 2000.
[2] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi, “Computational

techniques for the verification of hybrid systems,” Proc. IEEE, vol. 91,
pp. 986–1001, 2003.

[3] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent
hamilton-jacobi formulation of reachable sets for continuous dynamic
games,” IEEE Trans. Autom. Control, vol. 50, pp. 947–957, 2005.

[4] F. Blanchini and S. Miani, Set-Theoretic Methods in Control.
Birkhauser, 2008.

[5] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in European Control Conf., Zürich, Switzerland, July 17–
19 2013, pp. 502–510, http://control.ee.ethz.ch/∼mpt.

[6] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Control Optim., vol. 25, pp. 206–230,
1987.

[7] T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi, “Beyond
HyTech: Hybrid systems analysis using interval numerical methods,” in
Hybrid Systems: Computation and Control, 2000.

[8] M. M. Zavlanos and G. J. Pappas, “Potential fields for maintaining
connectivity of mobile networks,” IEEE Trans. Robot, vol. 23, pp. 812–
816, 2007.

[9] A. Colombo, G. Rodrigues De Campos, and F. Della Rossa, “Control
of a city road network: Distributed exact verification of traffic safety,”
IEEE Trans. Autom. Control, vol. 62, pp. 4933–4948, 2017.

[10] S. M. Loos and A. Platzer, “Safe intersections: At the crossing of hybrid
systems and verification,” in IEEE Conf. on Intelligent Transportation

Systems, 2011.
[11] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability

specifications for hybrid systems,” Automatica, vol. 35, pp. 349–370,
1999.

[12] A. Colombo and D. Del Vecchio, “Efficient algorithms for collision
avoidance at intersections,” in Hybrid Systems: Computation and Con-

trol, 2012.
[13] M. Hafner, D. Cunningham, L. Caminiti, and D. Del Vecchio, “Cooper-

ative collision avoidance at intersections: Algorithms and experiments,”
IEEE Trans. Intell. Transp. Syst, 2013.

[14] L. Bruni, A. Colombo, and D. Del Vecchio, “Robust multi-agent
collision avoidance through scheduling,” in IEEE Conf. on Decision and

Control, 2013.
[15] H. Ahn, A. Rizzi, A. Colombo, and D. Del Vecchio, “Experimental

testing of semi-autonomous multi-vehicle control for collision avoidance
at intersections,” in IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems, 2015.
[16] G. Rodrigues de Campos, F. Della Rossa, and A. Colombo, “Optimal

and least restrictive supervisory control: safety verification methods
for human-driven vehicles at traffic intersections,” in IEEE Conf. on

Decision and Control, 2015.
[17] A. Colombo and D. Del Vecchio, “Least restrictive supervisors for

intersection collision avoidance: A scheduling approach,” IEEE Trans.

Autom. Control, vol. 60, pp. 1515–1527, 2015.
[18] H. Ahn and D. Del Vecchio, “Semi-autonomous intersection collision

avoidance through job-shop scheduling,” in Hybrid Systems: Computa-

tion and control, 2016.
[19] F. Altché, X. Quian, and A. De La Fortelle, “Least restrictive and

minimally deviating supervisor for safe semi-autonomous driving at an
intersection: An MIQP approach,” in Int. Conf. on Intelligent Trans-

portation Systems, 2016.
[20] S. A. Reveliotis and E. Roszkowska, “On the complexity of maximally

permissive deadlock avoidance in multi-vehicle traffic systems,” IEEE

Trans. Autom. Control, vol. 55, pp. 1646–1651, 2010.
[21] H. Ahn and D. Del Vecchio, “Safety verification and control for collision

avoidance at road intersections,” IEEE Trans. Autom. Control, accepted.
[22] K. Dresner and P. Stone, “A multiagent approach to autonomous

intersection management,” J. Artif. Intell. Res., vol. 31, pp. 591–656,
2008.

[23] A. De La Fortelle, “Analysis of reservation algorithms for cooperative
planning at intersections,” in Int. Conf. on Intelligent Transportation

Systems, 2010, pp. 445–449.
[24] T.-C. Au, C.-L. Fok, S. Vishwanath, C. Julien, and P. Stone, “Evasion

planning for autonomous vehicles at intersections,” in IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, 2012.
[25] J. Lee and B. Park, “Development and evaluation of a cooperative

vehicle intersection control algorithm under the connected vehicles
environment,” IEEE Trans. Intell. Transp. Syst, vol. 13, pp. 81–90, 2012.

[26] J. Gregoire, S. Bonnabel, and A. De La Fortelle, “Priority-based intersec-
tion management with kinodynamic constraints,” in European Control

Conf., 2014, pp. 2901–2907.
[27] R. Hult, G. R. Campos, P. Falcone, and H. Wymeersch, “An approximate

solution to the optimal coordination problem for autonomous vehicles
at intersections,” in American Control Conference, 2015, pp. 763–768.

[28] M. A. S. Kamal, J.-I. Imura, T. Hayakawa, A. Ohata, and K. Aihara,
“A vehicle-intersection coordination scheme for smooth flows of traffic
without using traffic lights,” IEEE Trans. Intell. Transp. Syst, vol. 16,
pp. 1136–1147, 2015.

[29] N. Murgovski, G. Rodrigues de Campos, and J. Sjöberg, “Convex
modeling of conflict resolution at traffic intersections,” in IEEE Conf.

on Decision and Control, 2016, pp. 4708–4713.
[30] G. R. de Campos, P. Falcone, R. Hult, H. Wymeersch, and J. Sjöberg,

“Traffic coordination at road intersections: Autonomous decision-making
algorithms using model-based heuristics,” IEEE Intell. Transp. Syst.

Mag, 2017.


